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Oil prices are very volatile. But much of this volatility seems to reflect short-term, 

transitory factors that may have little or no influence on the price in the long run. Many 
major investment decisions should be guided by a model of the long-term price of oil and 
its dynamics. Data on futures prices can be used to filter out the short-term volatility and 
recover a time series of the latent, long-term price of oil. We test a leading model known 
as the 2-factor or short-term, long-term model. While the generated latent price variable 
is clearly an improvement over the raw spot oil price series, we also find that (1) the 
generated long-term price series still contains some of the short-term volatility, and (2) a 
naïve use of a long-maturity futures price as a proxy for the long-term price successfully 
filters out a large majority of the short-term volatility and so may be convenient 
alternative to the more cumbersome model.  
 
 

INTRODUCTION 

A striking characteristic of the spot oil price series is the fact that it occasionally 

exhibits large swings up or down which are then followed by reversals back towards 

some central tendency. The most dramatic example of such a swing is the sharp price 

spike occasioned by the first Gulf War in late 1990. Starting from a level below $18 per 

barrel in mid-July, the price peaked above $40 per barrel in October, then falling back 

below $18 per barrel by late-February 1991. A less dramatic example is the drop in prices 

that occurred in 1993 when conflicts within OPEC resulted in a temporary glut of 

supplies and prices went from over $18 per barrel in August to below $14 per barrel in 
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December, recovering back to over $18 per barrel again in June 1994.1 From December 

1998 to November 2000 the price nearly tripled from $11 to $35 per barrel. But this 

dramatic increase was marked by several reversals down by $10 per barrel before the 

upward trend recovered. Then within the space of slightly more than a year, the price fell 

again down to $18 per barrel and recovered as quickly back above $30, continuing its rise 

marked by swings of as much as $10 per barrel. For each of the swings just mentioned 

the recovery occurs within less than a year, sometimes within a couple of months.  

These dramatic fluctuations can be seen in Figure 1 which shows the graph of the 

spot price of oil from September 1989 through May 2006.2 The huge price run-up since 

late 2001 dominates the figure, but even during this rise the trend has been marked by 

significant swings. As we are writing this, the price has fallen 20% from its high in mid-

summer 2006 in the space of only a few months. One result has been newsworthy losses 

in a number of investment funds that had profited from the earlier run-up. 

How much of the daily movements in the oil price is composed of such transitory, 

short-term swings? How much volatility is left after the effect of these short-term 

movements is filtered out? When we observe a sharp spike in the price, how much of that 

is likely to be reversed, and how quickly? Answering these questions is important for a 

large number of decisions.  

                                                 
1 It was this temporary drop in the spot price that occasioned the brush with bankruptcy by the German 
company Metallgesellschaft due to its speculation in oil futures. 
 
2 Consistent with the practice in the finance literature, we refer to the price of the near month futures 
contract as the spot price, although it is not a price for truly immediate physical delivery as the term ‘spot’ 
denotes. Futures prices have a number of useful properties that make it worthwhile to work with the 
shortest maturity futures contract instead of with the actual spot price series.  
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Short-term swings in the oil price don’t change the value of a major oil-related 

investment, so it would be useful to be able to filter them out. If we can filter them out 

and arrive at a cleaner measure of the long-term volatility of oil prices, this would be the 

right volatility parameter to use when valuing oil-related projects with large option 

features. For example, Gibson and Schwartz (1991), Schwartz (1998) and Schwartz and 

Smith (2000) all make the point that even when oil prices are driven by a more 

complicated process involving both short- and long-term factors, a simpler, one-factor 

model can be employed to value the options embedded in long-term assets. Schwartz and 

Smith (2000) illustrate this with an example of the right to develop an oil property where 

development is completed with a 3 year lag and the decline in production is slow—

exponential at 5% a year. The asset value can be approximated using a single-factor 

model in which the long-term oil price follows a geometric Brownian motion. Since there 

are many useful and widely known valuation formulas derived for this price process, 

being able to rely upon it is convenient. The right volatility parameter to use in this 

single-factor model is not the raw spot price volatility: rather, it is the volatility of the 

long-run price only, i.e., the volatility cleaned of the effects of the short-run factors. 

The large short-term volatility in the oil spot price is at the center of a current 

dispute over how oil companies should calculate the reserves they report in their financial 

statements. “Proven reserves” are those that are likely to be recovered under existing 

economic conditions, including price. What price should be used in making such a 

calculation? The Financial Accounting Standards Board (FASB) and the SEC 

recommend that companies use the end-of-year spot price. Many companies, however, 
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would prefer to use a more stable forecasted price which they claim is used when they 

actually plan their development of reserves. 

Until recently, many oil companies resisted the pressure to report reserves based 

on the end-of-year spot price. The recent scandal at Shell over misreporting reserves put 

new pressure on all companies to move to the uniform methodology advocated by the 

FASB and SEC. When in February 2005 Exxon Mobil made the switch and announced 

its 2004 results using the end-of-year pricing method, it simultaneously issued a press 

release to advertise the method’s main flaw: the arbitrary effect of short-term volatility. 

Exxon Mobil was forced to remove from its reserves approximately 500 million barrels 

in its Cold Lake field, a heavy oil-bitumen steam project in Canada. Although bitumen 

prices “were strong for most of 2004,…on the day of December 31, 2004, prices were 

unusually low due to seasonally depressed asphalt sales and industry upgrader problems 

in Western Canada. Prices quickly rebounded from December 31, and through January 

2005, returned to levels that have restored the reserves to the proved category.”3 The end-

of-year pricing method resulted in a reserve replacement ratio for Exxon of 83%: under 

Exxon’s former methodology it would have been 112%.  

Exxon Mobil together with other oil companies, including Anadarko, BP, 

Chevron, ConocoPhillips, El Paso, Kerr-McGee and Marathon are lobbying for 

consideration of alternatives to the end-of-year pricing methodology. One alternative that 

has been proposed is using a futures price for oil instead of the spot price in these 

                                                 
3 Exxon Mobil press release, February 18, 2005, “Exxon Mobil Corporation Announced 2004 Reserves 
Replacement”. 
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estimates. Other alternatives being advocated include using modeled prices.4 Among the 

many things to be considered in evaluating such proposals, is whether the futures price is 

free of the short-term volatility that is the alleged culprit of the current system, and 

whether modeled prices provide sufficient marginal advantage over the raw futures price, 

including whether the modeled prices have filtered out significantly more of the short-

term volatility. This paper addresses these two questions and so provides helpful 

information on this policy issue. 

 

2.  INFORMATION FROM FUTURES PRICES 

One tool for filtering out the short-term, transient volatility is data on futures 

prices. The price of a futures contract of a given maturity reflects expectations about the 

future spot price at that horizon.5 So the dynamics of the futures price at any given 

maturity is unaffected by short-term factors that dissipate within that maturity horizon. 

Prices on longer maturity futures contracts should reflect less and less of the short-term 

factors and should give a cleaner picture of the remaining volatility. 

Gibson and Schwartz (1990) and Schwartz (1997) develop a two factor dynamic 

model of the term structure of oil futures prices which exploits this feature of futures 

prices. Baker, Mayfield and Parsons (1998) and Schwartz and Smith (2000) show that the 

                                                 
4 These companies sponsored a study of the issue by CERA which was released in February 2005 under the 
title In Search of Reasonable Certainty: Oil and Gas Reserves Disclosures. 
 
5 There is, of course, a large literature on the information contained in futures prices, on the expectations 
hypothesis and the forecast accuracy of futures prices. This goes back at least as far as Dow (1941) and 
Working (1942). A good review of various aspects of the literature is in Williams and Wright (1991). One 
point worth emphasizing is that the focus in this paper is exclusively on obtaining a good estimate of the 
long-term volatility of the oil price. We do not address here whether the futures price may be systematically 
biased. 
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two-factors can be represented as a short-term, transient component in the spot oil price 

and a long-term, lasting component. Each component is subject to shocks. Shocks to the 

short-term component do not have a lasting effect on the future price of oil. They 

dissipate gradually. In contrast, shocks to the long-term component are lasting and so 

cumulate. The observed volatility of the spot price is a function of the volatilities of both 

factors. Estimation of the model allows us to filter out the portion of the spot price 

volatility due to the short-term transitory factor and determine the volatility due to the 

long-term factor. 

Formally, the model is written as tt)tPln( χ+ξ= , where ξ is the log of a latent, 

long-run component of the oil price and χ is the short-run component which produces a 

temporary deviation of the current spot price from the long-run price. The latent, long-run 

price component is modeled as a simple random-walk with drift: ξξξ σ+μ=ξ dzdtd t , 

where μξ is the instantaneous rate of growth, σξ is the volatility of the long-term 

component, and dzξ is the standard increment to a Wiener process. The short-run 

component is modeled as a simple mean reverting process: χχσ+κχ−=χ dzdtd tt , where 

κ is the rate of mean reversion, σχ is the volatility in the short-run component, and dzχ is 

the standard increment to a Wiener process. The correlation between the two Wiener 

processes is written dtdzdz ξχχξ ρ= . This model is a hybrid of a pure random walk model 

and a pure mean reverting model. The spot price is mean reverting, but the mean to which 

it reverts is itself evolving as a random walk. 

This model of spot prices combined with a theory for the valuation of futures 

contracts implies a specific term structure for the set of futures prices at a moment in 
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time. Writing FT,t for the price for a futures contract with time to maturity T quoted at 

time t, the log of the futures price is given by the equation: 

( ) TT)()Fln( 2
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where λξ and λχ are the parameters for the market price of risk associated with the 

uncertainty in the future value of the long- and short-run factors. This formula can be 

understood as a combination of (i) the forecasted long-run factor, T)( 2
2
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adjustment for the market price of risk associated with the long-run factor, Tξλ− , (iii) the 

expected contribution of the current short-run factor value to the forecasted spot price, a 

contribution that declines over time, t
te χκ− , (iv) the expected contribution of short-run 
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market price of risk associated with the short-run factor, an adjustment that asymptotes to 

a fixed value in time, 
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−− χκ− )e1( T .  

This specific structure makes it possible to infer the parameters of the underlying 

process from observations of the term structure. The front-end of the term structure 

reveals information about the short-run factor and whether the spot price is above or 

below the long-run price. Essentially, whenever the short-run factor is very positive and 

therefore the spot price is significantly above the current long-run price, the term 
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structure will initially slope sharply downward. Whenever the short-run factor is very 

negative so that the spot price is significantly below the current long-run price, the term 

structure will initially slope upwards. In both cases, the slope or curvature of the term 

structure will attenuate as we look at futures contracts with greater maturity. The rate of 

attenuation in the slope reveals the speed of mean reversion and therefore the rate of 

dissipation of the short-run factor. At longer maturities, the term structure approximates a 

flat line, and the slope reveals information about the long-term component—whether the 

drift of the long-term factor, net of the discount for risk, is positive or negative. 

Observing a sequence of term structures allows us to infer what portion of the 

movement in the oil price is due to movements in the short-run factor and what portion is 

due to movements in the long-run factor, and also to infer the volatility of the short-run 

factor and the long-run factor as well as their correlation. We do this estimation using the 

Kalman filter methodology. Our implementation of the Kalman filter estimation follows 

Harvey (1989) and Hamilton (1994), generally using the notation of Schwartz and Smith 

(2000). To implement the Kalman filter we represent the model in a transition equation 

describing changes in the state variables through time and a measurement equation 

describing the relation between the state variables and observed futures prices.   

We re-write the model in discrete-time to yield a transition equation: 

xt = c + G xt-1 + ωt,    t = 1, … n, 

where xt is a 2×1 vector of the two state variables, ⎥
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uncorrelated innovations, Δt is the time interval in years, i.e., for weekly observations 

Δt=1/52, and n is the number of periods in the data set. The innovations, ωt, are normally 

distributed with zero mean and covariance matrix W,  

⎥
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We then write the measurement equation describing the relationship between the 

underlying state variables and observed futures prices:  

yt = d + Ft’xt + vt,    t = 1, … n, 

where yt is a m×1 vector of log futures prices for m different maturities, d is a m×1 vector 

of functions of the model parameters, with 
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Ti is the time to maturity of the ith futures contract, F’ is a m×2 matrix of functions of the 
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MMF , and vt is a m×1 vector of uncorrelated, normally 

distributed residuals with mean zero and covariance matrix V. We assume this matrix to 

                                                 
6 Schwartz and Smith (2000 p. 901) write that W is given by their equation (3b) which is different from the 
matrix we show here.  However, in the Appendix they construct the discrete time process which in the limit 
gives the continuous process. At the top of p. 911 they produce the matrix W which describes the variance 
of the serially uncorrelated innovations in the discrete time process, and this W matches the one we use 
here. 
   As their appendix shows, a sequence of innovations generated with this variance matrix W, translates into 
a future pair of state variables with the covariance matrix Vn also shown on p. 911. In continuous time the 
covariance matrix Vn becomes the covariance matrix for the state variables shown in equation (3b) on p. 
901. 
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be diagonal. The coefficient vectors c and dt, and matrices, G, W and F, are functions of 

the parameters of the continuous-time model. The matrix V does not involve the model 

parameters, only the variance of the noise in the measurement equation.  

 We follow the approach of Harvey (1989) to update the optimal estimator of the 

state variables at time t given information available at time t, at|t, and the covariance 

matrix of the estimation error, Pt|t. In the process, we derive the likelihood function to be 

maximized for the parameters of interest.7 Given the optimal estimator of the state 

variables at time t-1, at-1|t-1, and the covariance matrix of the estimation error, Pt-1|t-1, the 

optimal forecasts at|t and Pt|t can be obtained using the prediction equations 

1-t|1-t1-t|t Gaca += , 

WGGPP   '1-t|1-t1-t|t +=  

and the updating equations 

),( 1-t|tttt1-t|t1-t|tt|t aFdyFQPaa '1 −−+= −  

1-t|tt1-t|t1-t|tt|t PFFQPPP '1−−=  

where 

V  FPFQ ' += 1-t|tt . 

 Note that the updating equations incorporate the information contained in yt, the 

variables observed at time t. 

Concerning the initial forecast, a1|0, required to start the Kalman recursion, we set 

the forecast of the initial value of the short-term component 0χ  equal to its unconditional 

mean of zero, and let the model estimate the mean of the initial value of the long-term 

                                                 
7 See Harvey (1989) Section 3.2. 
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log-price, 0ξ . Since the long-term component has a unit root, x0 does not have a finite 

variance, and we use W/(1-G(1,1)2), where G(1,1) = exp(-κΔt) is the autoregressive 

coefficent of the stationary short-term component.8 

This setup enables us to calculate a likelihood of observing the set of data 

examined given a particular set of model parameters. We vary the parameters to 

determine which set maximizes the likelihood. Estimation was done using the 

OPTIMUM module in GAUSS, and trying various combinations of initial values to 

check the robustness of the estimates. In all cases, essentially the same estimates were 

obtained, suggesting that we obtain a global maximum. 

We estimated this short-term, long-term model using weekly oil futures price data 

from September 1989 to May 2006. We used prices on futures contracts with maturity 

out to 17-months. A number of considerations entered into this choice. First, as indicated 

in the introduction, most of the apparent short-run swings in price dissipate within this 

horizon, so 17-months may be far enough out to filter the short-run volatility. Second, 

data limitations during the window of estimation push in favor of this horizon. The 

NYMEX oil futures exchange has only gradually begun to offer a dense set of contracts 

for maturities of every month out longer than the 17-month horizon. The maturity of a 

contract shortens through time, so what is today the 5-month contract becomes the 4-

month contract. And what becomes the 5-month contract was once the 6-month contract. 

A continuous series of prices for the constant maturity 5-month contract requires a 

regular set of contracts for each neighboring month’s maturity so that as the maturity of 

one contract shortens to less than 5-months, it is replaced by a new contract that has 

                                                 
8 Here we are following Hamilton’s suggestion—Hamilton (1994, pp. 378-379). 
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shortened to 5-months. While there exist oil futures contracts out several years in 

maturity, there is not a series of contracts with a maturity for each month at that horizon. 

When the 2-year contract becomes a 23-month contract, there is no formerly 25-month 

contract becoming a 2-year contract. These interruptions make it difficult to construct a 

continuous constant maturity contract dataset at longer maturities. Through time as the oil 

futures market has evolved, the horizon where this is possible has gotten longer. But then 

the tradeoff is whether one can go back far enough to construct an adequately long time 

series. We chose the 17-month contract as a compromise that gives us a meaningfully 

long time series and an adequately long maturity.  

Table 1 reports the model parameter estimates as well as the raw volatility on the 

spot price. Focusing on the estimation made using the 1, 5, 9, 13 and 17 month contracts, 

the estimated volatility for the long-term component, σξ, is only 16.3%, or less than half 

the raw spot price volatility of 36.2%. The mean reversion parameter, κ, is estimated at 

0.863, which translates to an estimated half-life for short-term swings in price of a little 

more than 9 months. This estimate for the half-life vitiates our earlier, casual observation 

on the life of short-term price swings and our choice of the 17 month contract horizon in 

the estimation.9 

 Implicit in the estimation of the model is the construction of a time series for the 

latent, long-run price of oil—i.e., the price that would obtain if the effects of the short-run 

component were removed. Figure 1 shows this series overlayed on the graph of the actual 

spot oil price. The effect of filtering out the short-term, transitory factor is evident. Many 

                                                 
9 Although the model also produces estimates of the long-term drift parameter, μξ, and of the price of risk 
for each factor, λξ and λχ, as with forecasts for expected returns on other assets, these estimates are not very 
precise. We report them for completeness. 
 



Page 13 

of the largest swings and reversals present in the spot oil price series disappear in this 

series. Of course the recent rise from around $25/bbl in 2003 to as high as $70/bbl is not 

represented as a short-run swing: the estimated long-run price rises as well. Indeed, at the 

end of this time in May 2006, the estimated long-run price is above the spot price. The 

volatility of this estimated long-run price series is the 16.3% estimated volatility of the 

long-term component.10 

 

3.  HAS SHORT-TERM VOLATILITY BEEN SUCCESSFULLY FILTERED? 

How successful is the two-factor model in filtering out all of the short-run, 

transitory volatility? If it is successful, then the estimated latent, long-term price series 

should be a random walk, free of any swings and reversals. Is it? 

Visual inspection of Figure 1 suggests that the estimated series may fail this test. 

Although the long-term price series doesn’t exhibit price swings and reversals of the 

same magnitude as the spot price, tempered versions of many of these swings and 

reversals still seem evident. For example, the long-term series spikes during the Gulf War 

when the spot price spiked so sharply. The long-term spot price series shows a sharp 

spike and reversal in October 2000 when the spot price shows a similar movement. From 

September 2004 through the end of 2005 there are several short-run swings in the spot 

price of $10 barrel around the general upward trend. These apparent swings are mirrored 

in the estimated long-term price series. Are these casual observations truly signs of 

                                                 
10 Volatility reported is the annualized weekly standard deviation of returns, where Rt = log(Pt/Pt-1) and 
weekly volatilities are annualized as σa=σw√52. 
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remaining short-term volatility that was not successfully filtered out, or simply peculiar 

realizations in an essentially random walk pattern? 

To address this question more rigorously, we applied a formal statistical test to the 

series. A random walk is a specific case of a unit process – one for which there is no 

serial correlation in the first differences. Accordingly, we applied a unit root test and then 

tested for serial correlation in the first differences of the process. The results are shown in 

Table 2. Consistent with the random walk specification, the unit root test fails to reject 

the null hypothesis of a unit root. However, the serial correlation test finds strong 

evidence of negative serial correlation in the first differences: the coefficients are 

negative and the p-values establish that these are significantly different from zero. This is 

inconsistent with the estimated long-term price series being a random walk, and seems to 

confirm that the two-factor model has not been completely successful in filtering out all 

of the short-term, transitory contributions to volatility.  

Why might the estimated long-term price series still show signs of the short-term 

volatility that ought to have been filtered out? One obvious problem will arise if there is a 

specific form of measurement error in the observed prices on long maturity futures 

contracts that we have not been able to identify and control for properly. This might arise, 

for example, due to illiquidity in longer maturity contracts. Another possibility is that the 

short-term/long-term model does not describe the true dynamics and therefore does not 

predict the correct term structure, and this misspecification error is translated into a 

misestimated long-term price series. Alternative models for the term structure have been 

proposed by Routledge, Seppi, and Spatt (2000), by Casassus, Collin-Dufresne and 
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Routledge (2004) by Kogan, Livdan, and Yaron (2005) and by Tze, Foster, Ramaswamy 

and Stine (2005). 

A particular case of the model misspecification arises if the curvature of the term 

structure changes with the maturity. A key assumption of the model is that all of the 

short-term, transient shocks dissipate at a constant rate, so that the curvature of the term 

structure is fixed throughout the term structure. If the curvature of the term structure 

changes with the maturity, then the model is mis-specified and the parameter estimates 

will be affected. This is especially relevant for the estimate of the long-term volatility 

parameter, since the model is essentially projecting the curvature of the term structure 

within the range of the maturities used for estimation, i.e., between 1- and 17-months, out 

to the infinite horizon. This projection of the curvature applies equally to the term 

structure of volatilities. 

We re-estimated the model on two different subsets of contracts within the 17 

month horizon: the shorter maturity contracts of 1, 3, 5, 7 and 9 months, and the longer 

maturity contracts of 9, 11, 13, 15 and 17 months. The parameter estimates are shown in 

Table 1. The rate of mean reversion is highly sensitive to the choice of contracts used to 

estimate the model: at the short end the estimated rate of mean reversion is 1.329 or a 

half-life of approximately 6 months, while at the long end the estimated rate of mean 

reversion is 0.757 or a half-life of 11 months. The estimated long-term volatility using the 

shorter maturity contracts is 17.5% and using the longer maturity contracts is 16.6%. This 

is not a large difference, although in both cases it is higher than the 16.3% arrived at 

using the full range of contracts. 
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We also ran the test for serial correlation on the long-term price series generated 

by each of the alternative estimations. The results are shown in Table 2. In all cases the 

long-term price series shows evidence of serial correlation. 

  

4.  A NAÏVE ESTIMATOR 

By reducing to only two factors all of the dynamics in the term structure of 

futures prices, the short-run, long-run model is a significant simplification of the possible 

dynamics driving the oil price. Nevertheless, it is a mathematically demanding model for 

industry analysts to employ, and estimation of the parameters is correspondingly difficult. 

Few people understand the mechanics of the Kalman filter technique, and even fewer of 

them are capable of sharing that knowledge with less statistically inclined members of a 

corporate team involved in decision making. Moreover, although we have not touched on 

the complications here, there are certain subtle choices to be made and a number of issues 

and caveats that could be raised in favor of alternative approaches to the estimation. 

Quite often those with the mechanical knowledge of the Kalman filter technique and 

those who have the familiarity with key market issues relevant to choosing among these 

approaches are different groups of people and it may not be practical to assume they can 

be brought together. 

So the question arises, how much extra information does one get as a result of 

deploying this complicated machine? Or put another way, is there a simpler foundation 

for deriving the same results that practicing analysts would find more appealing? How 

large of a compromise is made if a simpler estimator is used? 
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The premise of the short-run, long-run model is that the effect of the variations in 

the short-run factor is largely felt in the price of short maturity futures contracts. The 

effect of these variations in the short-run factor die out gradually as one looks to contracts 

with greater and greater maturity. Therefore, variation in the price of contracts with a 

relatively long maturity reflects primarily the effect of volatility in the latent, long-term 

factor. The solid curved line in Figure 2, Panel A shows the estimated model volatilities 

for futures prices as a function of the maturity of the contract using the formula 

ξχχξ
κ−

ξχ
κ− σσρ+σ+σ=σ T22T22

T e2e . The solid horizontal line is the long-term volatility 

to which the solid curved line asymptotes. Also shown in the figure are the actual 

volatilities for futures contracts of various maturities. The solid diamonds show the 

maturities used in the estimation. The ‘×’ marks show other maturities. 

A naïve estimator, then, could be to simply view the volatility in the futures price 

on a long maturity contract as a direct observation of the volatility of the latent, long-run 

price. This naïve inference would contain some bias, because even the volatility of a 

long-maturity futures price will reflect some residual amount of the short-run volatility 

that has not yet dissipated. But so long as this residual amount is small, the bias is small. 

Theoretically, the longer the maturity of the contract used, the less the bias. In actual 

practice there may be measured sources of volatility due to institutional issues in the 

futures price that may not dissipate with maturity, or even that may increase if one gets to 

long maturities with insufficient liquidity.  

Since the longest maturity contract used in our estimation is the 17 month 

contract, it seems appropriate to use the volatility on the raw 17-month futures price as 

the naïve estimator for the long-term volatility. How much bias is left in this naïve 
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model? How does it compare against the estimated latent, long-run price from the full 

blown 2-factor model? How much extra filtration of short-run volatility is provided by 

supplementing this raw 17-month volatility with a model of the term structure of 

volatilities and data on shorter maturity contracts? 

Assuming that the model estimate of 16.3% for the long-term volatility is correct, 

short-term factors contribute approximately 20 percentage points to bring the observed 

spot price volatility up to 36.2%. The naïve estimator of the long-term volatility is the 

17.4% volatility on the 17-month contract. This is only 1.1 percentage points greater than 

the 16.3% model estimate for the long-run volatility. In this case the naïve estimator 

would have identified 94% of the short-term contribution to the spot volatility identified 

by the more complicated model.11 

Panels B and C of Figure 2 show the same comparison of model and observed 

volatilities when the model is estimated either using the short maturities of 1, 3, 5, 7 and 

9 months or using the long maturities of 9, 11, 13, 15 and 17 months. Both of these 

estimations produce a higher long-term volatility—17.5% and 16.6%, respectively—and 

therefore attribute less of the raw spot volatility to the short-term factor. If we use either 

of these as a benchmark, then the naïve estimator of the raw 17-month contract 

volatility—17.4%--appears to filter more of the short-term, transient volatility. Indeed, in 

the case of the short maturities, the naïve estimator is one-tenth of a percentage point 

lower than the estimate from the full short-term, long-term model.  
                                                 
11 We chose the 17-month contract price as the naïve estimator because it was the longest maturity used in 
our estimation. Others may prefer a contract maturity that is more of a focal point such as the 1-year futures 
price. This, too, does reasonably well. The 1-year contract has a volatility of 19.3%. This is only 3 
percentage points greater than the 16.3% model estimate for the long-term volatility. In this case the naïve 
estimator would have identified 85% of the short-term contribution to the spot volatility identified by the 
more complicated model. 
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Another way to evaluate the naïve estimator is to visually compare the 17-month 

future price series against the estimated long-term price series as is done in Figure 3. The 

dynamics of the two series are remarkably similar. Many of the transitory price spikes 

that seem apparent in the spot price series, and that appear to have some residual 

influence in the 17-month futures price series, show themselves also in the long-term 

price series. In a simple visual inspection it is difficult to discern the superiority of the 

estimated long-term price series over the 17-month futures price series with respect to 

having filtered out short-run, transient factors. 

As we noted earlier, valuation equations or models based on the more widely 

understood single-factor, geometric Brownian motion model can be reliably used to value 

options in long-term oil related investments, so long as the right inputs are used. The 

right inputs are not those taken from the simple dynamics of the spot price. The effects of 

short-term, transitory fluctuations in the spot price must be first filtered out. The right 

volatility estimate to use in such a model would be the estimate of the long-run volatility 

like that obtained from the short-run, long-run model. The results of this paper suggest 

that a volatility estimate based on the raw volatility from a long-maturity futures contract 

would be a reasonable substitute.12 

 

                                                 
12 The valuation of the long-term assets using a single factor model also requires (i) an estimate of the 
current level of the long-term price, and (ii) an estimate of the risk-neutral drift. Both of these can be 
derived from the two-factor model, although there may be reasons for looking elsewhere for estimates of 
these two parameters. We don’t address alternative estimators for these two elements of the valuation. We 
focus exclusively on the volatility parameter. 
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5.  CONCLUSIONS 

The short-term, long-term model of oil prices clearly helps us understand the 

distinction between the daily volatility observed in the spot price and the long-run 

volatility in forecasted prices. Estimation of the model provides a markedly improved 

measure of the correct long-term volatility that is useful for most major investment 

decisions linked to the oil price. We have shown that although this improvement is 

significant, there remains some amount of the transient volatility still contained in the 

model’s estimate of the long-term volatility. We have also shown that a naïve estimator 

using the raw volatility on the longest maturity futures contract succeeds in filtering out 

most of the transient volatility caught by the full blown model. This naïve estimator is 

significantly easier to work with. It requires no complicated statistical knowledge and no 

implementation of difficult estimation procedures. The formula for estimation can be 

simply written in a single cell of an Excel spreadsheet. 

The success of the naïve estimator also provides an opening for the resolution of 

the conflict over the right price to use in calculating proven reserves for financial 

reporting purposes. While many of the oil companies have properly complained about the 

volatility in the spot price and the curious results that follow from that, an alternative that 

is sometimes proposed is to leave them discretion to utilize whatever price forecast they 

deem best. Regulators are obviously cautious about granting that kind of discretion.  This 

paper shows, however, that longer maturity futures contracts contain very little of the 

short-term transitory volatility that is at the heart of the objection to end-of-year spot 

pricing. They provide a viable alternative that is both simple and effective.
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Figure 1. Spot Oil Price Overlayed with an Estimated Long-Term Price Series

The spot oil price weekly from September 1989 to May 2006 where the 1-month NYMES futures price is used as the spot price. The estimated long-
term price series is calculated using the short-term,.long-term model in Schwartz and Smith (2000). Five futures contracts are used—the 1-month, 5-
month, 9-month, 13-month and 17-mpnth contracts. Model parameter estimates are shown in Table 1.



Figure 2. Volatility of Oil Futures Prices by Contract Maturity
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The horizontal line is the estimated long-term volatility as reported in Table 1. The curved line shows model volatilities for futures by maturity per the 
formula in Schwartz and Smith (2000):                           Points marked individually are the observed volatilities for futures prices 
of the corresponding maturities; diamonds mark the maturities used in the estimation, and crosses mark other maturities. Reported values are annualized 
weekly standard deviation of returns,  where Rt = log(Pt/Pt-1) and weekly volatilities are annualized as σa=σw√52.

16.3% = Est. long-term volatility from short-term/long-term model

Panel A: Estimation Using the 1, 5, 9, 13, and 17-Month Contracts

ξχχξ
κ−

ξχ
κ− σσρ+σ+σ=σ T22T2

T e2e



Figure 2. Observed and Modeled Volatility of Oil Futures Prices by Contract Maturity
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Figure 3. The 17-Month Futures Price Versus the Estimated Long-Term Price

The 17-month oil futures price weekly from September 1989 to May 2006. The estimated long-term price series is calculated using the short-term, long-
term model in Schwartz and Smith (2000). Five futures contracts are used—the 1-month, 5-month, 9-month, 13-month and 17-mpnth contracts. Model 
parameter estimates are shown in Table 1. 



Table 1. Parameter Estimates for the Short-Term, Long-Term Model

Contract Months Used in Estimation
Parameter 1, 5, 9, 13, 17 1, 3, 5, 7, 9 9, 11, 13, 15, 17

Volatility of Long-Term Price (estimated) σξ 16.3% 17.5% 16.6%
(38.567) (40.640) (40.076)

Volatility of Short-Term Factor (estimated) σχ 31.4% 31.9% 31.1%
(37.612) (38.530) (40.396)

Correlation of Volatilities (estimated) ρξχ -18.6% -0.3% -26.1%
(-2.038) (-0.143) (-7.212)

Volatility of Spot Price, Model (calculated) 34.1% 36.3% 33.3%

Volatility of Spot Price (raw data) 36.2% 36.2% 36.2%

Speed of Mean Reversion (estimated) κ 0.863 1.329 0.757
(35.158) (49.243) (42.854)

Half-Life of Short-Term Factor (calculated) 0.80 0.52 0.92

Risk-Neutral Instantaneous Drift of the Long-Term Price (estimated) μξ-λξ 0.6% -3.7% 1.4%
(2.333) (-11.772) (6.175)

Instantaneous Drift of the Long-Term Price (estimated) μξ 9.0% 9.2% 8.9%
(2.462) (1.971) (2.179)

Growth Rate of the Long-Term Price (calculated) 10.3% 10.7% 10.2%

Long-Term Risk Premium (calculated) 8.4% 12.8% 7.5%

Short-Term Risk Premium (estimated) λχ 14.1% 9.9% 14.3%
(1.829) (1.713) (1.536)

Parameter estimates are for the short-term, long-term model in Schwartz and Smith (2000) using weekly futures price data from September 1989 to May 2006. In each 
estimation five futures contracts are used with the months of the contracts shown at the top of the column. T-statistics are shown in parentheses. The model has seven 
parameters to be estimated. Other parameters shown in the table are functions of these seven, and so are simply calculated and displayed for convenience and with no t-stat 
shown.The model spot price volatility is a function of the volatility of the long- and short-term factors and the correlation coefficient. The half-life of short-term price 
movements is a restatement of the speed of mean reversion. The growth rate of the long-term price is a function of the estimated instantaneous drift and the estimated long-
term volatility. The long-term risk premium is a function of the risk-neutral instantaneous drift and the instantaneous drift parameters. Not shown are our estimates for the 
residuals in the measurement equations, i.e., for each of the 5 futures contracts, and our estimate for the initial long-run component.



Table 2. Test Results for Unit Root and Serial Correlation in First Differences

Model Estimated Long-Term Price Series Raw Futures Price Series

Contract Months Used in Estimation
1, 5, 9, 13, 17 1, 3, 5, 7, 9 9, 11, 13, 15, 17 Spot, 1-Mos 9-Mos 1-Year 17-Mos

Unit Root Test
Test Statistic (6 lags) 1.38 0.73 1.32 -1.91 -0.30 0.13 0.64
Test Statistic (20 lags) 1.57 0.73 1.59 -1.83 -0.25 0.15 0.65

Serial Correlation Test (1st Difference, 1 lag)
Coefficient -0.118 -0.085 -0.130 -0.153 -0.113 -0.123 -0.142
Q-Stat 11.540 6.043 14.152 19.581 10.610 12.698 16.900
P-Value 0.0007 0.0140 0.0002 0.0000 0.0011 0.0004 0.0000

The critical values for the unit root test are -3.4 at 5% significance and -3.1 at 10% significance. Although none of the time series can reject the unit root, whether for the estimated long-term price or for the 
actual futures contracts. However, the test statistic is closest to rejection at the shortest maturity contract. As the maturity of the contract increases, the test statistic moves further from rejection, with the 
estimated long-term price series being furthest from rejection. If a time series is a random walk, then in addition to having a unit root, there should be no serial correlation in the first differences. All of the 
time series fail this test: in all cases there is strong evidence of serial correlation.




